Math 7760 - Homework 2 - Due: September 7, 2022

Practice Problems:

Problem 1. Prove that $\operatorname{dim}\left(\operatorname{Conv}\left\{v_{1}, \ldots, v_{n}\right\}\right)=\operatorname{rank}(\hat{V})-1$ where

$$
\hat{V}=\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
v_{1} & v_{2} & \ldots & v_{n}
\end{array}\right)
$$

Problem 2. Recall from analysis that if $S \subseteq \mathbb{R}^{n}$ is compact, then each continuous function $f: S \rightarrow R$ has a maximum and a minimum on S. Now let $C \subseteq \mathbb{R}^{d}$ be closed and convex and let $x \in \mathbb{R}^{d} \backslash C$. Prove that there exists a unique point $y \in C$ minimizing the Euclidean distance to x. [Hint: begin by reducing to the case that C is compact.]

Problems to write up:

Problem 3. Prove the hyperplane separation theorem (see below for the theorem statement and a proof outline).
Theorem (Hyperplane separation theorem). Given a convex $C \subset \mathbb{R}^{n}$ and a point $y \in \mathbb{R}^{d} \backslash C$, there exists $a \in\left(\mathbb{R}^{n}\right)^{*}$ and $b \in \mathbb{R}$ such that $a x \leq b$ for all $x \in C$ and $a y \geq b$.

Outline of proof:
Split into the cases based on whether or not $y \in \operatorname{rb}(C)$.
Case 1: $y \notin \operatorname{rb}(C)$:
(1) Prove that there exists a unique z in the closure of C that is nearest to y in the Euclidean distance metric (c.f. Problem 2).
(2) Reduce to the case where $z=-y$.
(3) Show that $y^{T} x \leq 0$ for all $x \in C$. [Hint: show that if $y^{T} x>0$, then $t x+(1-t) z$ and y are closer to each other than z and y are to each other for small positive t.]
(4) Conclude that the hyperplane separation theorem is true when $y \notin \operatorname{rb}(C)$.

Case 2: $y \in \operatorname{rb}(C)$:
(1) Reduce to the case that $y=0$ and note that it is enough to construct a linear hyperplane that does not intersect relint (C).
(2) Inductively construct a sequence of linear spaces $L_{0}, \ldots, L_{d-1} \subseteq \mathbb{R}^{d}$ with $\operatorname{dim} L_{i}=i$, none intersecting relint (C). [Hint: for $k \leq d-2$, note that L_{k}^{\perp} has a two-dimensional subspace P and that $P \cap\left(C+L_{k}\right)$ is convex. Argue that P contains a line L through the origin that does not intersect $P \cap\left(\operatorname{relint}(C)+L_{k}\right)$, and that this implies $L_{k}+L$ does not intersect $\operatorname{relint}(C)$.
(3) Conclude that the hyperplane separation theorem is true.

